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Abstract The genetically anchored physical map of
peach is a valuable tool for identifying loci controlling
economically important traits in Prunus. Breeding for
disease resistance is a key component of most breeding
programs. The identification of loci for pathogen resis-
tance in peach provides information about resistance
loci, the organization of resistance genes throughout the
genome, and permits comparison of resistance regions
among other genomes in the Rosaceae. This information
will facilitate the breeding of resistant species of Prunus.
A candidate gene approach was implemented for locat-
ing resistance loci in the genome of peach. Candidate

Electronic Supplementary Material Supplementary material is
available for this article at http://dx.doi.org/10.1007/s00122-005-
0079-z

Communicated by R. Hagemann

D. A. Lalli - A. V. Blenda - A. G. Abbott

Department of Genetics, Biochemistry, and Life Science Studies,
Clemson University, 100 Jordan Hall, Clemson, SC 29634, USA
E-mail: aalbert@clemson.edu

V. Decroocq (X)) - V. Schurdi-Levraud - O. Le Gall

INRA Centre de Bordeaux, IBVM-UMR GDPP-Virology,
BP 81, 33883, Villenave d’Ornon, France

E-mail: decroocq@bordeaux.inra.fr

Tel.: +33-55-7122383

Fax: +33-55-7122384

L. Garay
Greenwood Genetics Center, 1 Gregor Mendel Circle,
Greenwood, SC 29648, USA

V. Damsteegt
USDA/ARS Foreign disease-Weed Science Research Unit,
1301 Ditto Avenue, Fort Detrick, MD 21702, USA

G. L. Reighard
Department of Horticulture, Clemson University,
170 P A BLDG, Clemson, SC 29634, USA

V. Schurdi-Levraud
AGRO-M, 2place P.Viala, 34060 Montpellier Cedex 1, France

genes representing NBS-LRR, kinase, transmembrane
domain classes, as well as, pathogen response (PR)
proteins and resistance-associated transcription factors
were hybridized to a peach BAC library and mapped by
using the peach physical map database and the Genome
Database for Rosaceae (GDR). A resistance map for
Prunus was generated and currently contains 42 map
locations for putative resistance regions distributed
among 7 of the 8 linkage groups.

Introduction

Breeding for disease resistance is one of the most
important objectives in any breeding program and is
particularly relevant in fruit tree crops where generation
time and population size hamper rapid breeding re-
sponse to pathogens and pests. Augmenting traditional
breeding practices with more modern molecular map-
ping technologies better equips the breeder to meet the
challenge of breeding sustainable resistance. The devel-
opment of genetic maps and molecular markers enables
the mapping of quantitative trait loci (QTL) and assists
breeders in selecting desirable traits early on in the
breeding program (Foulongne et al. 2003). The identi-
fication of loci for pathogen resistance in peach: pro-
vides information about genomic structure of individual
resistance loci; elucidates the genomic distribution of
various classes of resistance genes; and permits struc-
tural and functional comparisons of resistance regions
among other genomes in Prunus. Previous mapping and
comparison of resistance loci in the family Solanaceae
revealed that there is some conserved order of resistance
genes, but the individual gene functions may vary across
species (Grube et al. 2000). The development of a
resistance map for Prunus is an important first step in
examining resistance gene order and gene function in
Prunus and potentially in the Rosaceae as well.
Advances in genomics, such as the creation of com-
plete BAC physical maps for genomes, allow the map-
ping of cloned sequences without the need for



segregating populations (Michelmore 2000). In this re-
gard, a BAC library for peach was previously developed
by Georgi et al. (2002). Wang et al. (2002a, b) used this
library for high-throughput simple sequence repeats
(SSR) development in peach and for mapping the peach
evergrowing region that controls an economically
important trait. It is also the basis, together with a
haploid peach BAC library (L.L. Georgi et al., unpub-
lished), for the development of an integrated physical/
genetic map of peach (Horn et al. 2005). This peach
physical map is anchored genetically to the widely used
general map for Prunus (Joobeur et al. 1998; Aranzana
et al. 2003) and is a valuable resource for identification
and cloning of genes conferring pathogen and pest
resistance (Horn et al. 2005). Other laboratories have
illustrated the value of BAC library resources for iden-
tifying genes associated with disease resistance in apple
(Vinatzer et al. 2001; Xu et al. 2002), chick pea (Rajesh
et al. 2004), citrus (Deng and Gmitter 2003), Arabidopsis
thaliana (Aarts et al. 1998), Myrobalan plum (Claverie
et al. 2004a) and cocoa (Clément et al. 2004).

There are five classes of resistance genes (R-genes),
with the most abundant class encoding proteins con-
taining the nucleotide binding site-leucine rich repeat
(NBS-LRR) domain. The NBS-LRR class is further
divided into two subclasses: the TIR-NBS-LRR (Dro-
sophila Toll and mammalian interleukin like receptors)
and the non-TIR NBS-LRR. The other four classes
encode R-gene proteins with domains as follows: the
extracellular LRR with transmembrane receptor and
intracellular protein kinase domain; membrane spanning
proteins with large extracellular LRRs; membrane pro-
teins with a coil-coil domain; and those with cytoplas-
mic ser/thr kinase domains (Ellis et al. 2000; Dangl and
Jones 2001).

In this paper, we present the use of a peach BAC
library and a genetically anchored peach physical map
for creating a resistance gene map for Prunus. Candidate
genes representing analogs of major resistance genes
(NBS-LRR, kinase, and transmembrane domain clas-
ses), translation initiation factors (eIF4E) known to be
involved in recessive resistance to plant viruses (Rodri-
guez et al. 1998; Duprat et al. 2002; Nicaise et al. 2003)
and defence response genes were hybridized to a peach
BAC library. Resistance regions were mapped by using
the peach physical map database and the Genome
Database for Rosaceae (GDR) (Jung et al. 2004). A
resistance map for Prunus was generated and currently
contains 42 map locations for putative resistance regions
distributed among 7 of the 8 linkage groups. The
development of a resistance map for Prunus provides
marked resistance loci for designing breeding strategies
to pyramid resistance genes for broad sustainable resis-
tance. This map also serves as a tool for comparing
resistance regions and determining the relationship be-
tween gene order and function of resistance genes across
the Rosaceae, ultimately, identifying particular species
that can be used as valuable donors of resistance in
breeding programs.
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Materials and methods

Identification of resistance and defence-related gene
fragments in Prunus species

Resistance and defence gene analogs were identified and
cloned as described in Decroocq et al. (2002, 2005). In
brief, a large set of degenerate primers was designed
based on conserved motifs in the aligned amino acid
sequences derived from known resistance and defence-
related genes (Table S1, available online). DNA tem-
plates for the polymerase chain reactions originated
from various Prunus species: P. armeniaca cv. Stark
Early Orange, P. persica cv. Summergrand and root-
stock Guardian™ selection 3-17-7, P. domestica cv.
Jojo. PCR products were separated on a 1.5% agarose
gel and DNA fragments equal or larger than the ex-
pected sizes were cloned in the pGEM-T vector (Pro-
mega) and sequenced. Nucleotide sequences of Prunus
resistance and defence gene analogs have been deposited
in the GenBank database under accession numbers
CZ445405-CZ445433. Other candidate genes were
identified by screening the peach cv. Nemared EST
(expressed  sequence  tags)  database  (http://
www.genome.clemson.edu/gdr/)

Sequence analysis

Similarity of the PCR products and peach ESTs was
confirmed by comparison of translated sequences with
the non-redundant GenBank database, using the Ad-
vanced BLASTX program at the National Center for
Biotechnology Information (Bethesda, MD) (http://
www.ncbi.nlm.nih.gov).

Genetic similarity analyses were performed on the
putative Prunus RGA nucleotide sequences as well as the
deduced protein sequences. Pairwise comparisons and
multiple alignments were performed using the ClustalX
(http://www.infobiogen.fr/), and neighbor-joining trees
were generated from sequence alignments with the
Treeview package (Win32 version, http://taxon-
omy.zoology.gla.ac.uk/rod/rod.html). The bootstrap
method was employed to evaluate the reliability of tree
branching. NBS sequences along with R-genes from
other plant species were included in the genetic similarity
analysis: N (U15605), L6 (U27081), LM6 (AAG09951)
representing the TIR NBS-LRR class of R-genes, and
RPM1 (Q39214), HRT/RPP8 (AAF36987), GPA2
(AAF04603), RSP2 (Q42484), Xal (T00020), and RCa7
(AA38218) of the non-TIR NBS-LRR R-gene class.

Identification of BAC clones containing the resistance
and defence gene analogs

The PCR fragments described above were re-amplified
directly from bacterial stocks using the T7 and SP6
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primers, purified on Qiaquick PCR purification col-
umns (Qiagen) and labeled with [¢—** P]dCTP
(Amersham) by random priming method (Feinberg and
Vogelstein 1983). These labeled probes were hybridized
onto a peach BAC library as described in Wang et al.
(2002a). This BAC library was constructed from DNA
of the cv. Nemared, and contains 44,000 pBeloBACI11
clones arrayed on two and one-half 22 cm® Hybond-
N+ filters and is one of the libraries currently being
used to construct a physical map of the peach genome
(Georgi et al. 2002) (http://www.genome.clemson/edu/
GDR).

BAC clones identified in the first screening were
inoculated into 100 pl of LB/chloramphenicol, and
incubated at 37°C overnight. BAC clones were then
stamped onto Hybond-N+ filters (Amersham, Piscata-
way, NJ) placed on LB/chloramphenicol agar plates,
and incubated overnight at 37°C. The filters were re-
moved from the agar plates and treated with a dena-
turing solution (1.5 M NaCl, 0.5 M NaOH) for 7 min
followed by a neutralizing solution (1.5 M NaCl, 0.5 M
Tris, pH 7.2, 1.0 mM EDTA) for 7 min, rinsed with 2x
SSC, and the filters were baked at 80°C for 2 h in order
to fix the DNA to the filters. Probes were labeled as
mentioned above. Prehybridization, hybridization, and
detection of positive BAC clones on these filters were
carried out as previously described, with the exception of
hybridization temperature and washing of the filters
(Wang et al. 2002a). Filters were prehybridized for 1 to
2 h and hybridized overnight at 60°C, and filters were
washed twice with 2x SSC, 0.1% SDS and once with 1x
SSC, 0.1% SDS.

Mapping of peach BACs containing resistance
and defence gene analogs

The peach physical map database and GDR (http://
www.genome.clemson.edu/gdr/) were used to determine
the map location of the confirmed positive BACs.

Results

RGA probe identification, sequence analysis,
and alignment

Resistance genes have highly conserved amino acid do-
mains that allow the use of degenerate primers and PCR
to amplify resistance gene analogs (RGAs) from geno-
mic DNA (Michelmore 2000). In order to map resis-
tance genes of different classes, we used degenerate
primers representing the NBS-like, Cf-like, and the
receptor kinase domains. Additional degenerate primers
representing translation initiation factors, kinases and
MYB, and b-Zip transcription factors as well were used
due to their potential roles in the host defence mecha-
nism and recessive resistance (Yin et al. 1997; van der
Fits et al. 2000; Park et al. 2001; Asai et al. 2002;

Duprat et al. 2002; Lellis et al. 2002; Nicaise et al. 2003;
Ruffel et al. 2002; Gao et al. 2004; Sato et al. 2005; Xiao
et al. 2005). The cloned sequences of the amplified
putative RGA products were aligned. Redundant se-
quences were eliminated and clones were selected for
hybridization to the peach BAC library based on their
sequence similarity to certain classes of R-genes or PR
proteins.

Identification of BAC clones and mapping resistance
and/or defence analog loci with the peach physical
map database and the GDR

From the above-mentioned analyses, a total of 58§ PCR
fragments representing putative RGAs and/or genes
involved in host resistance or defence were hybridized to
a peach BAC library. Positively hybridizing BACs were
re-screened and a total of 161 BACs were confirmed as
containing putative resistance and/or defence gene ana-
logs. A search of the physical map database revealed the
presence of 120 of these BACs. The remaining 41 BACs
were absent from the database presumably because they
had not previously been analyzed. Currently, of these
120 BACs, 93 are present within 73 contigs and 27 are
present as singletons.

The peach physical map database also provides
information about contig assembly, EST hybridization,
and genetic marker hybridization data. Of the 58 resis-
tance gene and/or defence analog PCR fragments, 10
hybridized to BACS positive for 7 genetic markers
(indicated by an asterisk) (Table 1); thus, 7 resistance
regions were directly placed on the Prunus general ge-
netic map (Joobeur et al. 1998; Aranzana et al. 2003;
Dirlewanger et al. 2004b). Twenty of the 58 probes
hybridized to BACs located within contigs containing
genetic markers, thus, indirectly mapping 24 additional
regions of resistance (Table 1).

In the situation when a probe hybridized to BACs
located within a contig that did not contain any Prunus
genetic markers, they could be mapped through their co-
localization with a mapped EST. A search of the GDR
at http://www.genome.clemson.edu/gdr/ was performed
for the ESTs which hybridized to the same BACs to
which candidate genes hybridized. If a map location has
been determined for a particular EST, the GDR will
provide this information through an EST search in the
GDR. Since the peach physical map is anchored on the
Prunus general genetic map, EST hybridization data to
BACs identified as containing putative RGAs or de-
fence-related genes also allows mapping of putative
resistance regions. Nine of the 58 probes co-hybridized
with mapped ESTs (Table 2) and these resolved into five
more mapped putative regions of resistance. Three re-
gions of resistance were determined simply by searching
the EST database for any resistance-like genes. In this
case, one particular EST PP_LE00260013 has been
mapped to three locations on the peach physical map
(Table 2).
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Table 1 Resistance gene probes that co-localize with mapped markers of the Prunus general genetic map to BAC contigs of the peach

physical map

Probe (GenBank Source species® ID® Marker® Linkage group

accession numbers)

A12 (CZ445423) Peach TIR-NBS-LRR R protein 7 CC63* G7
[Malus baccatal/6e-35

C5 (CZ445424) Peach NBS-LRR putative resistance gene analog CC63* G7
[Malus prunifolia)/2e-44

D2 (CZ445425) Peach RCa4 [Manihot esculenta] FGS81A, AGS53 Gl, G1
TIR-NBS-LRR/3e-42

D5 (CZ445426) Peach NBS-LRR putative resistance gene analog PC29A G6
[Malus prunifolia)/le-42

D12 (CZ445427) Peach NBS-like putative resistance gene FG53, FG78, Go, GO,
[Phaseolus vulgaris]/6e-40 CC63*, FG28* G7, Gl

ES (CZ445428) Peach Resistance protein candidate CC63* G7
[Vitis amurensis]/3e-37

F4 (CZ445429) Peach NBS-LRR disease resistance like protein AGI17A, 5-E2* G7, G7, G7
[Mentha longifolia)/2e-30 SCAL-19-MYRO*

Cd76 (CZ445405) Apricot Putative disease resistance protein FG28* Gl
(TIR-NBS-LRR class)
[Arabidopsis thaliana)/3e-37

Cd77 (CZ445406) Apricot Resistance protein analog PC29A G6
[Phaseolus vulgaris]/7e-39

Cd78 (CZ445407) Apricot NBS-kinase protein Z2 AG8 A, B, C G4, 5,1
[Solanum tuberosum]/9e-36

Cd81 (CZ445432) P. davidiana NBS-kinase protein Z2 AGI104 G7
[Solanum tuberosum]/6e-58

Cdg4 (CZ445408) Apricot CC-NBS-LRR protein AC31 G2
[Solanum tuberosum]/2e-06

Cd131 (CZ445409) Apricot NBS-like putative gene AG8 A, B, C G4,5,1
resistance homolog AC7A, FG5* Gl1, Gl
[Rosa roxburghii]/2e-14

Cd134 (CZ445410) Apricot NBS-like putative resistance protein FG28 Gl
[Phaseolus vulgaris]/2e-39

Cd136 (CZ445433) P. davidiana Resistance protein MG13 AC3, FG36 Gl, Gl
[Glycine max]/5° —50 AG8 A, B, C G4,5,1

AG113, B6H11 Gl1, Gl

Cd140 (CZ445431) Plum MRGH®63 resistance gene AG8 A, B, C G4, 5,1
[Cucumis melo]/9e-18

Cd38 (CZ445411) Apricot Wall-associated kinase (Wak4) AGI14A, PRUI1 G8, G8
[Arabidopsis thaliana)/4e-40

Cd39 (CZ445412) Apricot Wall-associated kinase (Wak2) AGI14A, PRUI G8, G8
[Arabidopsis thaliana)/5e-35

Cd113 (CZ445413) Apricot Receptor-like protein kinase LF98 G6
[Arabidopsis thalianal/9e-32

Cd82 (CZ445422) Peach myb-related transcription factor AGI108 G5
[Arabidopsis thaliana)/4e-08

Cd195¢ (CZ445415) Apricot Eukaryotic translation initiation factor 4E AG4A G8
[Pisum sativum]/1e-31

Cd207 (CZ445416) Apricot Eukaryotic translation initiation factor 4A LF573_PP2C* Gl
[Arabidopsis thaliana)/2e-76

Cd210¢ CO370600 Apricot Eukaryotic translation initiation factor 4E AG4A G8
[Pisum sativum]/Te-40

Cd213 (CZ445417) Apricot Potyvirus VPg interacting protein SCAL-19-MYRO* G7
[Pisum sativum)]/2e-76

Cd47 (CZ445418) Apricot Calcium-binding transporter-like protein AG25 A, B, AG29A Gl, G1
[Arabidopsis thaliana)/3e-57

Cd68 (CZ445419) Apricot Short chain alcohol dehydrogenase AGS8, FG49* G7, G7

[Nicotiana tabacum)/7e-19

#Origin of selected probes (source species)

Closest similarity with a member of GenBank database (ID)
“Genetic marker mapping on the same BAC clone(*) or contig
4Cd210 was cloned from cDNA as described in Decroocq et al. (2005). Cd195 is a PCR fragment obtained from apricot genomic DNA

Further analysis of co-hybridization of ESTs and
resistance-associated sequences to mapped BAC contigs
revealed the presence of EST-derived SSRs that could
have utility as markers for resistance. The ESTs con-

taining SSR sequences are PP_LEa0026L09f (G2),
PP_LEa0009B03f (G5), and PP_LEa0025002f (G7) and
can be found at http://www.genome.clemson.edu/gdr/.
These three localized putative resistance gene containing
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Table 2 Resistance gene probes that co-localize with peach ESTs to BAC contigs of the peach physical map

Probe (GenBank Source  ID® EST® Marker® Linkage group
accession numbers)  species®
D5 (CZ445426) Peach NBS-LRR putative PP_LEa0009L15  AC41A G4 (TXE, Joobeur et al. 1998)
resistance gene analog PP_LEa0012A23 G4 (JXF, Dirlewanger et al. 1998)
[Malus prunifolia)l/1e-42 PP_LEa0012K 18 GA4F (FXT, Joobeur et al. 2000)
AC55A.B G4, G5 (TXE, Joobeur et al. 1998)
LF11 GNG6 (P2175XGN,
Dirlewanger et al. 2004a)
D9 (CZ445430) Peach Putative NBS-LRR PP_LEa0030M23 ACI10 G2 (TXE, Joobeur et al. 1998)
type resistance gene PP_LEa0030N07 G2T (FXT, Joobeur et al. 2000)
[Prunus persical/4e-60 G2F (FXT, Joobeur et al. 2000)
D12 (CZ445427) Peach NBS-like putative PP_LEa0O009L15  AC41A G4 (TXE, Joobeur et al. 1998)
resistance gene PP_LEa0012A23 G4 (JXF, Dirlewanger et al. 1998)
[Phaseolus vulgaris]/6e-40 PP_LEa0012K 18 G4F (FXT, Joobeur et al. 2000)
ES (CZ445428) Peach Resistance protein PP_LEa0009L15  AC41A G4 (TXE, Joobeur et al. 1998)
candidate PP_LEa(0012A23 G4 (JXF, Dirlewanger et al. 1998)
[Vitis amurensis]/3e-37 PP_LEa0012K 18 G4F (FXT, Joobeur et al. 2000)
Cd68 (CZ445419) Apricot  Short chain alcohol PP_LEa0009J20 FG49a G7 (PXF, Dettori et al. 2001)
dehydrogenase
[Nicotiana tabacum)/Te-19
Cd99 (CZ445420) Apricot Transcriptional activator PP_LEa0030M24 ACI19 G2 (TXE, Joobeur et al. 1998)
RF2a [Arabidopsis G2 (GXN, Jauregui et al. 2001)
thalianal/2e-37 G2T (FXT, Joobeur et al. 2000)
G2F (FXT, Joobeur et al. 2000)
G2F (FXB, Ballester et al. 1998)
EAT/CAG7 G7 (SCXB, Sosinski et al. 1998)
Cd107 (CZ445421)  Apricot UDP-glucose:salicylic PP_LEa0011F03 FG9% G8 (PXF, Dettori et al. 2001)
acid glucosyltransferase
[Nicotiana tabacum)/4e-19
Cdl161 (CZ445414) Apricot myb-related protein PP_LEa0010M17 ACS55A,B G4, G5 (TXE, Joobeur et al. 1998)
M4 [Arabidopsis LF11 GN6 (P2175XGN,
thalianal/2e-20 Dirlewanger et al. 2004a)
Cd195 (CZ445415)  Apricot  Eukaryotic translation PP_LEa0030M24 ACI19 G2 (TXE, Joobeur et al. 1998)
initiation factor 4E G2 (GXN, Jauregui et al. 2001)
[Pisum sativum]/1e-31 G2T (FXT, Joobeur et al. 2000)
G2F (FXT, Joobeur et al. 2000)
G2F (FXB, Ballester et al. 1998)
EAT/CAG7 G7 (SCXB, Sosinski et al. 1998)
EST search Mlo-like resistance gene PP_LEa0026013 ' AC33A G2 (TXE, Joobeur et al. 1998)
AC37A G2 (TXE, Joobeur et al. 1998)
AG6 G4 (TXE, Joobeur et al. 1998)

“Indicates origin of selected probe (source species)
Closest similarity with a member of the GenBank database (ID)
“The EST and genetic marker information for the same BAC clone

regions map to locations previously identified as con-
taining QTLs for powdery mildew resistance in linkage
groups G2 and G5 (Foulongne et al. 2003; Dettori et al.
2001) and a nematode resistance gene, Mal, in linkage
group G7 (Dirlewanger et al. 2004a; Claverie et al.
2004b) (Fig. 1).

In addition to the 39 putative resistance regions
positioned in the general Prunus map, an additional
three were identified in other Prunus maps as they co-
localize to contigs identified by the markers LF11,
FG94, and AT/CAGT7 that are mapped in P2175 x GN
(Myrobalan plum X almond peach) (Dirlewanger et al.
2004a), P x F (peach x (peach x Prunus ferganensis))
(Dettori et al. 2001), and SC x B (peach)(Sosinski et al.
1998), respectively. In summary, we identified a total of
42 regions of resistance in the Prunus genome, 39 map-
ped on the peach physical/Prunus general genetic map
(Fig. 1) and 3 in linkage maps derived from the other

mapping populations of Prunus mentioned above. The
putative regions of resistance span 7 of the 8 linkage
groups on the Prunus general genetic map.

Genetic similarity analysis

Genetic similarity analyses of the mapped Prunus RGA
sequences along with known R-genes from other plant
species N, LM6, RPMI1, HRT/RPPS, L6, GPA2,
RPS2, Xal, and RCa7 were performed at the nucleo-
tide and the deduced amino acid sequence levels
(Figs. 2, 3). The PCR fragments obtained with the
degenerate primers representing translation initiation
factors, transcription factors, and kinases were not in-
cluded in these analyses since they shared no homology
with the R-genes or with each other. Among the R-
genes, L6 and N are representative of the TIR-NBS-
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Fig. 1 A resistance map for Prunus: resistance loci and QTLs are  genetic markers (see Table 1). Markers in bold with (A) indicate

indicated by large bold letters placed to the left of the linkage
groups, QTLs for powdery mildew (PM) (Dettori et al. 2001;
Foulongne et al. 2003; Dirlewanger et al. 2004b; I. Verde, personal
communication) and Sharka (S) (Vilanova et al. 2003; Decroocq
et al. 2005) as well as loci for nematode resistance (Ma and RMia)
(Claverie et al. 2004a; Dirlewanger et al. 2004a). Markers in bold
with (asterisk) show resistance regions mapped directly: RGA/
defence-related probes positive for BACs were also positive for

LRR class (Lawrence et al. 1995; Michelmore 2000);
RPM1 (McDowell 2004) and HRT/RPP8 (Cooley et al.
2000) represent the non-TIR-NBS-LRR class. On the
basis of the genetic similarity analyses, the Prunus
RGAs separate into 2 distinct clusters. One of the
clusters consists of the non-TIR NBS-LRR class and
the second cluster consists of the TIR-NBS-LRR class
of resistance genes (Fig. 2).

Analogs of Cf-like, kinase and other classes of R-
genes were hybridized to the BAC library but did not
map in the initial peach physical/Prunus general genetic
map since this map database is not yet complete. Few
co-localizations of Prunus RGA probes were observed.
This is presumably due to our preselection of non-
redundant RGA sequences for probe development.
However, we noticed that two distinct non-TIR-NBS-
LRR probes, D9 and Cd84, mapped to the same distal
region of linkage group G2 (Fig. 1). Similarly, four TIR-
NBS-LRR analogs (A12, D12, C5 and E5) mapped to
the same region in linkage group G7 (CC63 marker) and
three other TIR-NBS-LRR analogs (CD134, CD76, and
D12) in linkage group G1 (FG28 marker), (Table 1,
Fig 1).

resistance regions mapped by EST hybridization data (see Table 2).
—4 indicates an SSR identified from EST sequence data (http://
www.genome.clemson.edu/gdr/). The map is based on the Aranz-
ana et al. (2003) consensus map for Prunus and the peach physical
map (Horn et al. 2005). Curly brackets indicate clusters of non-TIR
(non-TIR NBS-LRR gene class) or TIR (TIR NBS-LRR gene
class). Note: Linkage group 3 is not shown here because no RGA
locations were discovered

Discussion

Identifying and mapping RGAs with the use of the
peach BAC library and physical map have allowed us to
locate putative regions of resistance in Prunus without
the use of segregating populations. In this study, we
have mapped a total of 42 regions of resistance based on
hybridization data obtained from 30 of 58 probes. As
the peach physical map is not yet complete, many of the
BACs identified as containing RGAs or putative de-
fence-related genes with the other 28 probes have not
been mapped. This is for several reasons: (1) not all
BAC:s identified by hybridization to RGAs have been
fingerprinted, (2) some BACs are present as singletons,
and (3) BACs belong to contigs that are not yet an-
chored on the genetic map. In the future, additional
RGAs will be mapped as the assembly of the peach
physical map comes to completion. Similar limitations
with physical mapping of RGAs in soybean have been
described by Pefiuela et al. (2002).

Of the 30 probes which proved to be informative for
mapping, only 17 returned BLAST results with sequence
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Fig. 2 Genetic similarity
analyses of the mapped Prunus
RGA sequences along with
known R-genes from other
plant species. Pairwise
comparisons and multiple
alignments were performed
using the ClustalX, and
neighbor-joining trees were
generated with the Treeview
package. The bootstrap method
was employed to evaluate the
reliability of the tree branching.
The following NBS sequences
from other plant species were
added in the genetic similarity
analyses: N (U15605), L6
(U27081), LM6 (AAG09951),
RPM1 (Q39214), HRT/RPP8
(AAF36987), GPA2
(AAF04603), RSP2 (Q42484),
Xal (T00020), and RCa7
(AA38218). Grey shading
indicates RGAs cloned from
Prunus genomic DNA and
located on the peach physical
map

HRT

Rpm1

D9

L6

Cd140

Cd131

Cds1
Cd78

LMs

Cd136

Cd134

GPA2
RPS2

Xa1

F4

Non-TIR type RCa7

TIR type
Cd7s

Cc5

cd77 D2
D12a pq2a

similarity to resistance genes of the NBS-LRR class;
however, these 17 probes accounted for more than half
of the total map locations identified. More interestingly,

TIR-NES= > genes
c5 FIRFATYNR-TEDREEAHGFT GOTROTAN-RHGELI YT KT I T AR TNERP-TFHT
Cdlz4 T TLAFALFNE—LVGHEDCHCLI SNVEE TSACHRGT T STENKT.IENLSENE-VEERY
Non-TIR

D9 ITLVARTFRDEIVERHEECYAWNT TIS S YVIEDLL RRLITKEFHKAKFEEF FAVMNA
F4 ARV DOEGVVEHEEKRMASVSVDEE I TRLIKMI LSSASDTEMS——-TK
c5 SOVDORMIKE KE—CLEATVEN-GOWFGSGSRIT TITROKHELD

Cdl34  NELETGVRRIRAIRYEKOT NVS--QLSALVENTEWEYFGSRITVITRDIKELE

OVH—LIWEFTRESFPLEDLGSEVMLTTRREDIASS
WNEDS TKWSELRDLLTFIGAKSGSKTLVITRNTWVAE

(0G] VLHVN-KTETVEEMNPOEGLELFCRHAFCHECENER——Y LELSKKVVEY SQGLE
Cdl34  SHIVN-KLYEVREIDSSKALQLENYHAI RREKPTTE—FENLSKETAALTOELPT AT

Do SEGVESHVHEIQPLEKGORNELFSMEAFSS Y PNKSCSPELLPLARELVEKCEELELA]
F4 MVGTIPTSINLEFLSFEDCTLSEFVECAFKEGRNEDY - PNLFEMEFDIVRKOGGEFLAL

HD

Fig. 3 Comparison of the predicted amino acid sequences of four
Prunus resistance gene-like fragments. Two Prunus representatives
of the TIR-type and two of the non-TIR type NBS-LRR genes
were selected and aligned using the ClustalX software. These
sequences correspond to the NBS domain. Three motifs charac-
teristic of this domain (P-loop, kinase 2 and HD = hydrophobic
domain) have been circled

D5

several of these probes mapped to locations where QTLs
for resistance mapped for traits such as, powdery mildew
(Dettori et al. 2001; Foulongne et al. 2003; Dirlewanger
et al. 2004b; I. Verde, personal communication) and
Sharka resistance (Decroocq et al. 2005). Moreover, 3
amplified RGAs mapped to the region of G7 that is
known to contain the Ma gene or on G2 close to the
RMai gene, both of which control resistance to root-
knot nematodes (Claverie et al. 2004a; Dirlewanger
et al. 2004a). Foulongne et al. (2003) described the
QTLs, with the strongest effect for powdery mildew
caused by Sphaerotheca pannosa, as being located in G6
and G8 in the three related crosses: SD (Prunus persica
cv Summergrand and Prunus davidiana clone P1908),
SD40” (a selected genotype from SD selfed), and SD40
backcrossed with Summergrand®. We mapped RGAs in
the region of the QTL for powdery mildew in G6 but not
in G8. In the case of QTLs for Sharka, although we did
not map in the same location as the strongest effect for
Sharka in linkage group G6, we did map RGAs in re-
gions associated with QTLs for Sharka in G1 and G7
(Decroocq et al. 2005). Additionally, we mapped mul-
tiple RGA clones in the same region of G1 as Vilanova
et al. (2003) mapped Sharka resistance. RGAs were
mapped in all of the linkage groups except linkage group
G3. Bliss et al. (2002) also failed to map any RGAs or
resistance-related sequences in G3 of the Prunus dulcis X
Prunus persica L. Batsch cross.



Sequence comparison revealed two distinct clusters of
RGAs, with majority of the RGAs belonging to the
TIR-NBS-LRR class. At this juncture, it is not possible
to determine if this is due to a greater abundance of this
class of RGA in the Prunus genome or a bias in the
amplification of RGAs due to limitations of primer
design. Mapping of RGAs indicated separate clustering
of TIR and non-TIR NBS-LRRs in the Prunus genome
(Fig. 1) as has been noted in Medicago truncatula (Zhu
et al. 2002) and soybean (Kanazin et al. 1996); however,
this is in contrast with findings in Arabidopsis and cas-
sava, where clustering together of TIR NBS-LRR and
non-TIR NBS-LRR was observed (Meyers et al. 1999;
Lopez et al. 2003). In future, further RGA mapping or
genomic sequencing in peach should help to resolve this
issue as well as to map other classes of RGAs (e.g. Cf-
like, Pto- like, Xa21-like, and RPWS8-like).

Probe 210 with sequence similarity to eIF4E (a
translation initiation factor involved in recessive resis-
tance to plant viruses) was mapped by RFLP in linkage
group G4 of the previously mentioned SD40° popula-
tion (Decroocq et al. 2005). There are four reported
elF4AE and iso4E in Arabidopsis thaliana (http://
www.arabidopsis.org). On the basis of this information,
it is anticipated that additional locations of eIF4E exist
in the Prunus genome. Indeed, we identified an addi-
tional location for the same probe in linkage group G8
near AG4A on the peach physical map. These results
illustrate how physical mapping of genes complements
mapping by molecular marker techniques that are labor
intensive, time consuming and limited to genes display-
ing detectable polymorphism.

Our research identifies regions of the Prunus genome
that contain resistance-related gene sequences and cor-
relates them with previously mapped phenotypic resis-
tance traits to different pathogens. This information will
be extremely useful to the Prunus community, as
breeding for resistance is time consuming due to the
lengthy maturation time of most Prunus species. The use
of a peach BAC library in conjunction with the peach
physical map database and GDR provides BAC library
and EST information which can facilitate map-based
cloning of genes involved in resistance to many pests and
pathogens, as well as the development of molecular
markers useful in marker-assisted selection (MAS) of
resistant species. In this study, three SSRs were detected
in putative regions of resistance and may prove to be
useful in MAS. The development of a resistance map for
Prunus based on the peach physical map, which is an-
chored to the general Prunus map, creates a framework
for these endeavors. The creation of such a map is also
an important initiative in determining resistance gene
order and gene function between other genomes of the
Prunoideae, as well as in the Rosaceae.
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